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"

uo_oonotden the problem of determining an optimal testirng
policy where ;e silmultanecusly galmr and learm for the case
where the outcome of one choice 13 known and the other 1is

subject to a known 3 priori distrlbutlzg, | AL

Results of Johnson and Kar.in, P=325, are cbtained in a
different way and extended. The @methods used are appli-

cable to more general processes. (f::\k
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A PROBLEM IN THE SEQUENTIAL DESIGN OF EXPERIMENTS

Richard be]liman

$1. Introduction

In two little—known papere written in 1933 and 1925, [14],
(18], ¥. R. Thompson propoeed the problem »f determining on the
basis of sequential analysis which of two Arugs were superlcr..
The problem is a 4ifficult one, and Thompson concentrated his
efforts on the ocomputation of the effects of a plausible policy,

and on a Monte Carlo detemmination of the outcome.

A problem 1in the 3ame general area was discussed by
Mahalanoblis, {11], [12], in connection with a sampling survey of

the acreage under Jjute in Bengal.

An interesting exposition of the general problem is given by
Rodbins, [13], where further references may be found. The connec—
tion with the Wald theory of sequential analysie 1s discussed, and

further problems in this fleld are presented.

The problem is also in the genersl field of "learning pro—
cesse<”, where we must determine the structure of a process while

carrying on an experiment, cf (8 ], [10), [13],

® We confees that we found these papers in tae standard fashion,
namely while thumbing through a journal containing another paper

of interest.
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In a8 recent ;aper} [QJ, ohnscn end “evrlin coneidered a
particular version of the Thom,..n ,robt.em, essentially the case
where one Arug has known propertiec and the other unknown, and
derived a number of {nteresting result: concerning the ctructure

of an optimal policy.

in tnis paper, we :sil coun:lder thelr rroblem 2nd an analiogous
predvler by means of & :l-.cussion of the fun~tional equation derived
from the process. Usirng techniques we nave employed in various
part. f the theory »f{ dynamic programming, [1], [2]. [M], [7].
we snall determire the :structure of the optimal poiicy and complete

the Johnson—<¥arlin resuits {n an essential detail.

In 52 we pre:ent g2 ;recise formulation of the probiem we
treat here. In 5) we derive the basic functional equation, with
properties of the solutlion, exlstence, uniqueness and cucces.ive
approximations discus:sed 1in fi. The next =ectlor contaire a
statement of the resuit: we obtain conceming the etructure cf
the optimal policy. 1In $6 we presert 8 prcof of these results.
Finally in $7 we dilscus: the numerical computation of the solution

bated upon tucce:--ive approximation:,

The metnods we employ are apglicable to more genersl jrocessee,

as we chal!l chow In further papers.

§2. Porwmulatiorn of the Probienm

Lt u¢ sscume that we have two ma hine., unimaginatively
called I and 11, with the following propertie:. If machine ] 1=

used, there 18 a probabllity = of recelving a galn >f one unit,
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and a probabllity l-r of receiving nothing. 1f machine [l 18

used, there is a corresponding probability of s.

Unfortunately these probabllities are not known. We do,

however, possess an 8 priori probability distribution for thelir

values, F(r,s).

We may now consider either a finite sequence of cholces where
we have n trials, or an unbounded process with a discount factor g
fer the value of a unit received one trial away. The {infinite
process 1s simpler analytically since it possesses an i{nvariant
aspect over time. Our methods are equally applicable to both

types of processes.

The prodblem 1s now to determine the sequence of choices which
maximizes the total expected return. This sequence is in general
otocshastiec since the cholce after any finite number of cholces will

depend upon the outcomes of the preceding choices.

In this paper, we shall consider only the simple cese where
r and 8 are uncorrelated, and ever further we shall assume that

8 1s knowmn. Let F(r) be the distridbution function for r in
(o0,1].

§3. The Basic Punctional Equation

We shall utilize an analytic approach based upon a functional

equation associated with the problem. t us define




g s

(1) rm n(a) = expected return obtained using an optimal policy
for an unbounded procers after the first machine

hae had m succeeses and n fallures.

Our fundamental assumption {s the usual one that the new
3 priorl distribution function after m =z=uccesse: and n failures

on the first (unknown) machine 1s iver by

(2) dF_ (r) = r"(1-r)"aP(r)

mn
‘/glrm(l-r)ndF(r)

On the bacsis of this assumption, an enumeration of outcomes

yields the relation, 1f the first machine 1s chosen,

1
(3) fm'n(s) - &/; rden(r) [ 1« afmol,n(s) ]

‘/;l(l-r)df’m(f‘) ( afm'n,l(s) ].

On the other hand, if the second («xnown) machine ig chosen,

we have

(&) fn’n(s) - 9 ¢ afm'n(a)

e =/(l-a).

dence we ottalin the fundamental recurrence relation

— R

1
(5) fo o (s) =Max| 1 /0rdPo (r) [ 1 ar .\ (s)]

e e (r) [afy (0],

11: s8/(l-s).

]

—

a typics. functional equation {n the theory of dynamil- programming.
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Let us now introduce some simplifying notation. Wwrite

(6) r, (s) ® f(m,n),

®,n

l
A rd'.‘(r) e Y(m,n).

Then (5) takes the simpler form

pr—— ———y

(7) f(m,n) @eMax | I: b(m,n) [ 1+ af(mel,n) ] + a(l-d(m,n)f(m,n+l))
I11: s/(l1-a)

— —

for m,n 2 .

Let us note that O ¢ a, 8 ¢ 1, and that O ¢ b(m,n) ¢ 1 for

m,n > O.

‘l. Existence and Uniquenesz of Solution

Since our analysis of the structure of the optimal policy will
be dased upon a continued application of successive approximations
to the system in (3.7), it 1s essential to have an existence and
uniqueness theorem and information conceming the convergence of

successive approximations.

The method we employ is equa’ly spplicable to other functional

equations in dynamic programming and examples may be found in (1],

(), (3, (5], (7.

Theorem 1. There 1s a unique solution to (3.7), {r(n.n)}, which

is uniformly bounded by 1/(1-a) for all m and n > 0. This solution

®may be obtained as the limit as kK —» ® of the seguence {rk(-,ng,

defined recurrently by




(1) f,(w,n) = g(m,m)

rk+1(-'n) ot Tm(rk)n k e 001020"'7 m,n > C,

where we set

(2) T .(f) =mex | I: d(m,n)(l + af{mel,n)) + (1-d(m,n)) [ af(m,nsl) ]

mn
11t s/(1-a)

Here {g(n,n)} may be any tequerce uniformly bounded by 1/(l1-a).

Proof: Let us define

(3) u,(f,m,n) = b(mn) [ 1+ af(mel,n)] + a [1-0(m,n) ] f{m,nel)
ugg(fim,n) @ s/(1-a)

Then for each m,n > O, we have

(8) £, (m,n) = u,(f ,m,n),

where A = ] or 1] and the choice 1= dependent upon m,n and fK.

Similarly
(5) f (m,n) =u (f ,mn),
where B may equai A.

In any case, we have, by virtue of the recurrence relation

of (1), the inegualitie-

(6) foq(mn) = u, (f ,m,n) > us(f ,m,n)

fk(m,n) - uB({

k-1"'

sm——

=
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Hence

(1) froy(min) = £ (m,n) > v, (f ,8,n) =y, (f ,,m,n)
< ug(f, ,m,n) —ug(f, ,,m,n)

These inequalities yleld

f_,m,n) -u (f ,,m,n)|,
(8) If , (mn) - £ (m,n)| ¢ Max [ luy(r, m,n) u (f _qomin)|
lugq (£, omn) = up (£, .mn)i ],

or, using the analytic expression for v,y and Uipe

(9} Ify , (mn) = £ (m,n)| ¢ ab(m,n)|f, (m+1,n) - , (;+1,n)]
+ a(l-b(l,n))lfk(l,nol) - fk_l(-.rwl)l

< 8 Max [ Irk(ul.n) - tk_l(ml,n) |,
Ifk(l,nﬂ) - fk_l(-,ml) e

If we set

(10) “k = iugz() l rk(-on) = tk—l(.'n) lo

the inequality in (G) ylelds

(11) Ua S Bu.

From this 1t follows that the series
®

(12) s(m,n) = g (€ oy (min) - £, (m,nj),

converges uniformly in = and n for m,n>0, and that rk(m,n) —» f(m,n)

.. k —00).

It 1is readily verified that {fk(-,na is uniformly bounded
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by 1/(1-a) for 0¢s<l if this holda for {g(m,n)} .

To estadblieh uniqueness, let {}(u,ni} be another solution,

uniformly bounded by 1/l-a, or any fixed quantity.
Proceedirig as in (4) — {3), we obtain the inequality

(15) lf(l,n) - '(-vn)l S a Max [: 't(M1on) = F("’lnn)lo
|£(m,ne1) — F(m,nsl)| J.

Setting

(14) v @« Sup  |f(m,n) - F(m,n) |,
m,n>0

the inequality in (13) ylelds
(15) u ¢ au,
and consequently the result that u = 0 or f(m,n) = F(m,n).

js. Statement of Results

Let us now state the results we shall prove concerning the
structure of the solution of (3.7). Observe that it 1e the "policy”,
i.e. the value of 3 which dictates a2 choice of machine 1 or machine 1]

which determines the sclution.

Theorem 2. Por each m,n>0, there 1s 8 unique quantity e(m,n) with

the property that

(1) (s) f(m,n) = s/(1-a), 1 » &3 s(m,n),
(o) e b(m,n)[ 1 + af(ml,n)] + a(1=>(m,n))f(m,nel),



0¢s ¢ s(m,n).

The sequence {l(l,n)} has the following properties

(2) s(wel,n) > s(m,n) > s(m,n+l),

and the sequence {r(n.n)} similarly satisfies the relations

(3) f(w+1,n) > f(m,n) > f(m,n+l)

Analogous results hold for the case of a finite numoer of

trials.

The proof which we shall present in the next section wi{ll be

based on the method of successive approximations.

§6. Proof of Theorea 2

We shall approximate to the solution of the original equation
by means of the sequence {rk(-,n)} defined as followe

(1) fy(m,n) = Max [ b(m,n), s/(1a) ],
fkol("") - Tm(tk). k ® 0,1,2,..., m,n > O.
We wish to peove the f-llowing statements

(2) (a) £, ,(m,n)> f (u,n)
(b) for all k > O, there is a sequence {sx("")} with the
property that
(1) fors ) sk(l,n), fkﬂ(n,n) e s/(l-a),
(2) for s ¢ ak(n,n), rkol("'") - ux(rk,-,n).
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(¢) f (m+l,n) > £ (m,n) > 1 (m,ne+l),
(a) s (m+l,n) > s (m,n) > s (m,n+l),

(e) s, ,,(mn) > = (m,n).

Let us begin with the case k = 0, Let f;o(-.nj} be the
~
sequence determined by the equation

(3) s/(1-a) = b(m,n).

Then (2b) 1s clearly true for k = 0. To obtain further relations

we require the inequalities
(4) b(m,n+l) < b(m,n) < b(msl,n)
for all m,n 2 O.

The second inequality 1s equivalent to

(5) ~/z1r'*1(l-r)"dr “/glr.*z(l-r)"dr
<
./;lr.(l-r)"dl’ ,/glr.'l(l-r)"dl?

or

(6) (/;'ra0)? < (/3 a0) (/' ra0)

where 4G = r"(1-r)"dF. This, however, 1s the Cauchy-Schwarz

inequality

It may readily be verified that the first inequality is also

equivalent to (6).

These inequalities, (4), yleld (2c) and (2d) for k = O.
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Let us now begin the induction. We have
(7) i (=m,n) =T ().

Since nl(m,n) i{s 4etermined by the equality of the two

expressions in Tmn(fb)' it is clear that
(8) sl(l,n) > ao(n,n).

Let us now demonrtr-ate the essential result that
(9) cl(n+l,n) > °1(m,n) > e}(l,n+1)

Consider the equetion for sl(l,n). We have, with « = sl(m,n),

(10) T%: e b(m,n) + ab(m,n)ro(n+l,n) + a(.—b(l.n))fg(l.n‘A)-

However, since

(11) s,(m,n) > s (m,n) > s (m,n+.),
we have for this value of s

(12) fo(l,nol) « s/(1-a)

Hence (10} reduces to

(13) TEI - b(m,n) + ab(m,n)f (m+l,n) + a(l-d(e,n))s/(1-a),

which ylelds

(18) » (1-a)o(m,r)(1 + af (mei,n))

l-a

l1-a + ab(m,n)

Since x/(l—e + 8x) ir monotone increasing x for x > 0, 1t follows

that




(15) (1-a)b(m+l,n)

(}<a) + ad(mel,n)

(l-a)b(m,n)

(1<) + ab(m,n)

P-586
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Since to(-wl,n) is monotone increasing in m for all n and s, 1t

follows that the curv

(16) u-*z(s) « (l1-a)b(m+l,n)

e

(1-a) + ab(m+l,n)

lies above the curve for “141(')’

same proof shows that 31(-,n+1) < '1(-'n)'

(1 + af‘o(ﬂ2.n)),

Hence al(-+1,n) > sl(l,n). The

The last step of the induction consists of the proof that

(17) fl(l+l.n) > rl(-,n) > fl(-,n¢l).

Consider the proof of the first of these inequalities. Vve

have

(18) rl(.‘lnn) - Max

ey

b(m+l,n) + ab(-+1,n)fo(l+2.n) + a(lo(m+l,n))

Let us set

(19) a, = f (ml,n),
b, = fo(-+2.n),
A= b(m,n),

s/(1-a)

a, = fo(l,n+1)
b, = ro(-+1,n+1)
b(m+l,n)

ro(-41.n+1)

- —

The location of ‘2"2"1'b1 on the real axis is as follows:

.
L

.
v

0 >
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by virtue of the inequalities holding for fjm,n). Since x> A ,
it 1s sufficlent to show that the convex combination ub, + (1-,& )b2
is greater than or equal to the convex combination Aal + (l-A)nz.

Consider the linear expression E(A) = Aal + (I—A)lg for
0CAg m. At Aejt, we have

(20) l(f") - f"l + (1-/“').2 < /ﬁbl $ ‘,l-l“')bz
At A= O, we have
(21) E(0) = a, < mb, + (1--,«.)!»2

for any > O.

Conseqiently, for all values of A in the interval [o.r] we
have

(22) B(A) < by + (1=pm)b,.

Comparing the expression for rl(-ol,n) with that for fl("")
it follows that tl(ul.n) > rl(-.n). The ineguality rl(-.n) > rl(-.nu)
is derived similarly.

We now have all the detalils required for an inductive proof
which proceeds from k and k+l1 in precisely the fashion above.

Since the inequalities are valid for all k, they are valid
for the limiting sequence {f(n.n)} , with strict inequality because
of the strict ineguality in the relation b(m+l,n) > b(m,n).



f?. Discussion

It seems tc be a very difficult problem to determine the
precise analytic form of 8n® Consequently the most efficient
method of determining this sequence is probably by means of

successive approximations starting with a suitable fo(-,n).

It 1s worth pointing out that in place of starting out with
an initial approximation, {}o(-.ni} , 1t 1s better to guess an
initial policey, {a'n} . It is simpler, and more natural, to choose
a sequence of values rather than a sequence of functions. Further-
more, we have a much stronger feel for an approximate pclicy than
we do for an approximate function, cf [1}, [3), [6], where this

idea 1= directed to other applications.

It is quite surprising that it is so difficult to prove the
intuitively obvious relations f(m+l,n) > f(m,n) > f(m,n+l). There
should be another formulation which makes this result obvious at a

glance.
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